To appear in Potential Analysis. DIMENSION-INDEPENDENT HARNACK INEQUALITIES FOR SUBORDINATED SEMIGROUPS

نویسندگان

  • MARIA GORDINA
  • MICHAEL RÖCKNER
  • FENG-YU WANG
چکیده

Dimension-independent Harnack inequalities are derived for a class of subordinate semigroups. In particular, for a diffusion satisfying the BakryEmery curvature condition, the subordinate semigroup with power α satisfies a dimension-free Harnack inequality provided α ∈ ` 1 2 , 1 ́ , and it satisfies the log-Harnack inequality for all α ∈ (0, 1). Some infinite-dimensional examples are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension-independent Harnack Inequalities for Subordinated Semigroups

Dimension-independent Harnack inequalities are derived for a class of subordinate semigroups. In particular, for a diffusion satisfying the BakryEmery curvature condition, the subordinate semigroup with power α satisfies a dimension-free Harnack inequality provided α ∈ ` 1 2 , 1 ́ , and it satisfies the log-Harnack inequality for all α ∈ (0, 1). Some infinite-dimensional examples are also presen...

متن کامل

Se p 20 09 Harnack Inequality and Applications for Stochastic Evolution Equations with Monotone Drifts ∗

As a Generalization to [37] where the dimension-free Harnack inequality was established for stochastic porous media equations, this paper presents analogous results for a large class of stochastic evolution equations with general monotone drifts. Some ergodicity, compactness and contractivity properties are established for the associated transition semigroups. Moreover, the exponential converge...

متن کامل

Super Poincaré and Nash-type inequalities for Subordinated Semigroups

We prove that if a super-Poincaré inequality is satisfied by an infinitesimal generator −A of a symmetric contraction semigroup on L2 and that is contracting on L1, then it implies a corresponding super-Poincaré inequality for −g(A) for any Bernstein function g. We also study the converse of this statement. We prove similar results for Nash-type inequalities. We apply our results to Euclidean, ...

متن کامل

Probability Inequalities and Tail Estimates for Metric Semigroups

We study probability inequalities leading to tail estimates in a general semigroup G with a translation-invariant metric dG . Using recent work [Ann. Prob., to appear] that extends the Hoffmann-Jørgensen inequality to all metric semigroups, we obtain tail estimates and approximate bounds for sums of independent semigroup-valued random variables, their moments, and decreasing rearrangements. In ...

متن کامل

Singular Stochastic Equations on Hilbert Spaces: Harnack Inequalities for their Transition Semigroups

We consider stochastic equations in Hilbert spaces with singular drift in the framework of [7]. We prove a Harnack inequality (in the sense of [18]) for its transition semigroup and exploit its consequences. Supported in part by “Equazioni di Kolmogorov” from the Italian “Ministero della Ricerca Scientifica e Tecnologica” Supported by the DFG through SFB-701 and IRTG 1132, by nsf-grant 0603742 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010